INTRODUCTION

Medical management is the mainstay in the management of ocular surface disease, with surgical therapy being reserved only for the most severe forms of the condition. Ocular surface disease encompasses a wide range of conditions such as dry eye, limbal stem cell deficiency disorders, ocular cicatricial pemphigoid and Stevens-Johnson syndrome. Surgical management of these disorders has witnessed great advances in recent years, particularly with regard to limbal stem cell transplantation procedures. The ability to expand limbal stem cells ex vivo as well as use oral mucosal stem cells as a source of limbal stem cells have, among others, made it possible to visually rehabilitate patients in whom no surgery would have been possible even a few years ago.

SURGICAL INTERVENTIONS

Surgical interventions for ocular surface disorders may be best described under the following heads: A) Surface stabilization procedures; B) Ocular surface transplantation; C) Penetrating or lamellar keratoplasty in ocular surface disease; D) Prosthokeratoplasty in ocular surface disease.

A) Surface stabilization procedures

These techniques mostly form adjuncts to primary medical management of ocular surface disorders. The following procedures are included:

1) Punctal occlusion (temporary, permanent, excisional)

Temporary occlusion is advisable as a trial before permanent occlusion. Options for achieving temporary punctal occlusion include dissolvable collagen plugs, sections of cat gut suture material, cyanoacrylate glue, or silicone plugs. Inferior and/or superior punctal occlusion may be performed.

Permanent punctal occlusion may be subsequently undertaken in patients who improve following the temporary procedure. This may be achieved by cauteterization of the punctal orifice using argon laser, thermocauterization using either monopolar/bipolar cautery or, rarely, canaliculectomy.

2) Tarsorrhaphy (temporary, partial, total, permanent)

Tarsorrhaphy reduces evaporative tear loss as well as trauma to the ocular surface during blinking movement of the eyelids. The advantages of a partial tarsorrhaphy are preservation of central vision as well as the ability to examine the ocular surface. Botulinum toxin injections may be used to create an iatrogenic ptosis that lasts approximately three months in most patients. Naik et al evaluated the effectiveness of anterior chemodenervation of levator palpebrae superioris with Botulinum toxin type A (Botox) to induce temporary ptosis for corneal protection, and assess the incidence of superior rectus underaction. Patients with ocular surface pathology requiring temporary tarsorrhaphy underwent transcutaneous anterior chemodenervation of levator palpebrae superioris with Botox. The onset and duration of ptosis, corneal healing, and superior rectus underaction was evaluated. Median dose of Botulinum toxin injection was 12.5 U (range 10-15 U). The mean palpebral fissure height of 9 mm (SD±2.1 mm) before injection, reduced to 2.8 mm (SD±1.9 mm) at 1-week post-injection. More than 50% reduction in palpebral fissure height was seen in nine out of 10 eyes (90%, 95% CI 71.4-100%) at 1 week, seven of nine eyes (77.8%, 95% CI 50.6-100%) at 2 weeks, and two of nine eyes (22.2%, 95% CI 0-49.4%) at 4 weeks, and returned to pretreatment level after mean duration of 9.2 weeks (range 5-16 weeks). Superior rectus underaction was not noted in any of the patients. Corneal pathology improved in all cases. Anterior placement of the toxin injection may avoid superior rectus underaction.

Cyanoacrylate glue may be used to create an adhesion between the upper and lower eyelids. These more conservative techniques may be used to demonstrate therapeutic benefit prior to more invasive surgery. Subcutaneous implantation of gold weights in the upper lid may also serve the same purpose, with the advantage of complete reversibility. Silver et al evaluated commercially available, thin platinum weights and compare complication rates and visibility rates with literature-reported data for gold weights. The platinum implant significantly reduced both capsule formation phenomena and extrusion compared with gold weights and could be considered as an alternative to the more conventional gold implants. Klein et al have described reversible marginal tarsorrhaphy as a salvage procedure for periorbicular burns. These may be partial (advancement or bucket-handle) as often used for a peripheral corneal lesion, or total (Gundersen). The recruitment of the conjunctival vasculature onto the avascular cornea enables
healing of a persistent epithelial defect or severe inflammatory focus. Lim et al evaluated the indications, complications, and long-term outcomes of a Gundersen flap for the treatment of various ocular surface conditions in an Asian population. Surgical success defined as attainment of a stable ocular surface with resolution of symptoms and no flap retraction or dehiscence resulting in re-exposure of the corneal surface was achieved in all eyes. Complications including infection, progression of the inflammatory or infectious disease process beneath the flap, flap loss from epithelial ingrowth, and epithelial cyst formation were encountered in 6 patients (24%). The Gundersen flap should be considered as a means of stabilizing globe integrity in the management of cases of severe ocular surface disease, particularly when visual potential is poor.

4) Anterior stromal puncture
First described by McLean et al in 1986, anterior stromal puncture is useful in the management of recurrent corneal erosions (dystrophic, post-infectious or post-traumatic).10 Though most commonly achieved using a 25-, 27- or 30-gauge needle, the YAG laser has also been used.

Tsai et al11 evaluated the clinical outcomes in patients with recurrent corneal erosions who received anterior stromal puncture by use of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. Of 33 eyes, sixteen eyes were completely symptom free and twelve eyes had mild pain but no evidence of recurrent corneal erosion after operation. Five eyes had repeated episodes of recurrent corneal erosion. Eyes with a traumatic cause responded better to Nd:YAG laser therapy than those without. The frequency of corneal erosions and the severity of pain significantly improved in eyes with macroform and symptom-only recurrence. There was no significant change in refraction, but corneal surface regularity slightly improved after surgery. No adverse reaction was observed during follow-up.

The traumatic disruption of Bowman’s layer incites fibroplastic transformation of the underlying stromal keratocytes and fibrin deposition, thereby enhancing epithelial adhesion to the Bowman’s layer.

5) Phototherapeutic keratectomy (PTK)
PTK is useful in patients with recurrent corneal erosions and is less likely to produce visually significant scarring as compared to anterior stromal puncture. The reported rate of success, regarding alleviation of symptoms and prevention of recurrence of epithelial erosion, ranges between 74% and 100%.16 The mechanism by which excimer laser ablation prevents recurrent erosion may lie in the strong bonds formed between the epithelial basement membrane and Bowman’s membrane post-operatively. The technique of treatment varies widely. Excimer laser can be used transepithelially or after debridement of the post-operatively. The technique of treatment varies widely. Excimer laser is useful in patients with recurrent corneal erosions and is less likely to produce visually significant scarring as compared to anterior stromal puncture. The reported rate of success, regarding alleviation of symptoms and prevention of recurrence of epithelial erosion, ranges between 74% and 100%.16 Though most commonly achieved using a 25-, 27- or 30-gauge needle, the YAG laser has also been used.

The mechanism by which excimer laser ablation prevents recurrent erosion may lie in the strong bonds formed between the epithelial basement membrane and Bowman’s membrane post-operatively. The technique of treatment varies widely. Excimer laser can be used transepithelially or after debridement of the post-operatively. The technique of treatment varies widely. Excimer laser is useful in patients with recurrent corneal erosions and is less likely to produce visually significant scarring as compared to anterior stromal puncture. The reported rate of success, regarding alleviation of symptoms and prevention of recurrence of epithelial erosion, ranges between 74% and 100%.16 Though most commonly achieved using a 25-, 27- or 30-gauge needle, the YAG laser has also been used.

b) Living-related conjunctival allograft: This is mostly performed as a conjunctival-limb allograft for limbal stem cell transplantation procedures, as described below.

2) Limbal transplantation: Limbal stem cell transplantation enables restoration of phenotypic corneal epithelium to the corneal surface, promotes the barrier function of the limbus and also enhances surface lubrication, thereby providing an improved milieu for maintenance of corneal clarity.

A) Conjunctival limbal autograft (CLAU): This procedure is indicated for patients requiring epithelial stem cell transplantation for management of corneal surface disease due to unilateral limbal stem cell deficiency, most often following chemical or thermal injuries.20 (Figure 2a,2b) It is essential that the donor eye be free from any condition that may predispose it to subsequent development of limbal stem cell deficiency. The risk of donor epithelial problems can be minimised by harvesting less than six clock hours of limbal tissue and a moderate amount of conjunctiva. Gentian violet markings within the graft help delineate the epithelial surface of the graft. At the time of harvesting the graft, dissection is performed into the peripheral cornea approximately 1 mm beyond the peripheral corneal vascular arcades. Correct orientation of the graft is vital. The major benefit is that the need for systemic immunosuppression is eliminated. The donor eye is treated with antibiotic/steroid drops 3 to 4 times daily until epithelialization is complete (usually 1 to 2 weeks).

Figure 1a,1b: Pterygium excision with ipsilateral superior bulbar conjunctival autograft: (a) pre-operative and (b) post-operative appearance
Table 1: Pterygium surgery: Recent advances and concepts

<table>
<thead>
<tr>
<th>Surgery performed</th>
<th>Estimate</th>
<th>Complications/Events</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary pterygium excision with</td>
<td>113 patients with</td>
<td>-</td>
<td>1 patient had an absent graft at week 1.</td>
</tr>
<tr>
<td>conjunctival autograft</td>
<td>recurrent pterygium</td>
<td></td>
<td>One patient developed an ectropion, one patient lost four lines of vision as a result of graft.</td>
</tr>
<tr>
<td>P.E.R.F.E.T. (Pterygium Extended</td>
<td>113 patients with</td>
<td>-</td>
<td>No recurrence at 1 year (all but two patients followed up for at least one year).</td>
</tr>
<tr>
<td>Extended Retrieval Followed by</td>
<td>recurrent pterygium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjunctival Transplant) for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>recurrent pterygium excision with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conjunctival autograft</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Cadaveric conjunctival limbal allograft: This procedure is rarely used nowadays, largely due to success of ex vivo culture techniques for limbal stem cells.

b) Living-related conjunctival limbal allograft (lrCLAL): The best HLA-matched relative is the ideal donor. ABO matching is also advisable since expression of blood-group antigens has been demonstrated on epithelial cells. Both eyes of the donor must be evaluated to exclude any condition that may contraindicate donation such as glaucoma (and the potential need for filtering surgery in the future), chronic use of topical medications and history of contact lens wear with Thiomersal-containing preservatives (that may cause stem cell depletion) or a prior surgical history (and the possibility of iatrogenic stem cell deficiency). Donor screening for HIV 1 & 2, Hepatitis B and C is mandatory. Most commonly, two pieces of tissue, each between two- and three-clock hours at the limbus are resected from the 12 o’clock and six o’clock areas, 5 mm posterior to the limbus. In the post-operative period, the aim is to minimize inflammation and promote epithelialization in both the donor and the recipient. In the recipient, vascularisation of the graft is essential for survival of limbal stem cells. Minimising graft movement due to lid action at the graft site can be achieved by keeping the eye patched between eyedrops for at least the first week. A bandage contact lens may also help. The recipient is prescribed antibiotic/steroid eyedrops 4 times daily. Autologous plasma or serum may be used to provide growth factors to the grafted epithelium. Preservative free tear supplements and/or early tarsorrhaphy may be necessary where indicated.

Systemic immunosuppression is advisable unless contraindicated. It is commenced on the day of surgery, most often with a combination of

The recipient eye is prescribed antibiotic eyedrops in addition to frequent application of preservative free artificial tears with topical steroids, three to four times daily to minimize post-operative inflammation.

Figure 2a, 2b: Conjunctival-limbal autograft for post-chemical injury partial limbal stem cell deficiency (a) pre-operative and (b) post-operative day 1 appearance

Soliman et al evaluated the usefulness of limbal stem cells and conjunctival autograft transplantation for the treatment of primary pterygium. 42 eyes of 42 patients with grade I-III primary pterygium underwent pterygium excision followed by superotemporal limbal stem cells and conjunctival autograft transplantation. Pterygium recurrences and complications within a mean follow-up period of 18.26 months (range, 10-28 months) were assessed.

RESULTS

There were no recurrences of pterygium growth except in 2 cases (4.75%). In addition, no significant complications were noted. No further surgical interventions were needed in any case except for reoperation in the 2 recurrent cases.

a) Cadaveric conjunctival limbal allograft: This procedure is rarely used nowadays, largely due to success of ex vivo culture techniques for limbal stem cells.

b) Living-related conjunctival limbal allograft (lrCLAL): The best HLA-matched relative is the ideal donor. ABO matching is also advisable since expression of blood-group antigens has been demonstrated on epithelial cells. Both eyes of the donor must be evaluated to exclude any condition that may contraindicate donation such as glaucoma (and the potential need for filtering surgery in the future), chronic use of topical medications and history of contact lens wear with Thiomersal-containing preservatives (that may cause stem cell depletion) or a prior surgical history (and the possibility of iatrogenic stem cell deficiency). Donor screening for HIV 1 & 2, Hepatitis B and C is mandatory. Most commonly, two pieces of tissue, each between two- and three-clock hours at the limbus are resected from the 12 o’clock and six o’clock areas, 5 mm posterior to the limbus. In the post-operative period, the aim is to minimize inflammation and promote epithelialization in both the donor and the recipient. In the recipient, vascularisation of the graft is essential for survival of limbal stem cells. Minimising graft movement due to lid action at the graft site can be achieved by keeping the eye patched between eyedrops for at least the first week. A bandage contact lens may also help. The recipient is prescribed preservative-free antibiotic/steroid eyedrops 4 times daily. Autologous plasma or serum may be used to provide growth factors to the grafted epithelium. Preservative free tear supplements and/or early tarsorrhaphy may be necessary where indicated.

Systemic immunosuppression is advisable unless contraindicated. It is commenced on the day of surgery, most often with a combination of
of systemic steroid and cyclosporine-A. While some discontinue immunosuppression after 12 to 18 months, others continue indefinitely. The addition of oral Azathioprine may permit lower doses of Cyclosporin-A. Yalcindag et al22evaluated the efficacy and safety of tacrolimus in prevention of allograft rejection in high-risk allo-limbal grafts. Six eyes of six patients with severe limbal stem cell deficiency were included. All patients were started 0.1 mg x kg 1 x day (-1) tacrolimus orally 3 days before the surgery. The study concluded that limbal allo-graft transplantation for ocular surface reconstruction had a successful outcome with using systemic tacrolimus for immunosuppression.

Scocco evaluated the long-term outcome of HLA-matched lr-CLAL for bilateral ocular surface disorders. 39 eyes of 32 patients with bilateral surface disorders and clinical diagnosis of limbal stem cell deficiency who underwent HLA-matched lr-CLAL were included. Visual acuity (VA), ambulatory vision (> or = 20/200) and ocular surface stability were evaluated as main outcomes. One year after surgery, VA improved in 46.2%, ambulatory vision was achieved in 48.7% and a stable corneal surface was achieved in 84.6% of the eyes. At the final follow-up (mean, 48.7 ±30.6 months), 66.6% of the eyes that had gained VA one year after surgery maintained an improved VA (p=0.28), 94.7% of eyes that had achieved ambulatory vision one year after surgery maintained 20/200 or better (p<0.001) and 93.9% still had a stable corneal surface (p=0.043) at the final follow-up.32

c) Keratolimbal allograft (KLAL): In this technique, allogenic cadaveric limbal stem cells are transplanted to a recipient eye with severe ocular surface disease using peripheral cornea as a carrier. It is indicated in patients with severe bilateral OSD secondary to limbal stem cell deficiency. It is best suited for disease entities that primarily affect the limbus with minimal or no involvement of the conjunctiva, most typically aniridia. A healthy and stable tear film is essential for success of the procedure.33

The surgical techniques described include the corneoscleral crescent technique of HollandScwartz24,25 (wherein the donor corneoscleral rim is sectioned into 2 halves), corneoscleral ring technique of Tsobotka6 (wherein ring-shaped donor corneal limbal cells bearing limbal stem cells is transplanted) and the homologous penetrating central limbo-keratoplasty (HPCLK) technique of Sundmacher27 (here the donor corneo-scleral button is eccentrically trephined, resulting in one-third of the circumference of the button containing limbal tissue, thereby combining a penetrating keratoplasty and a limbal stem cell transplantation procedure).30,36 Lim et al39 described an alternative and novel technique using cyanoacrylate glue to achieve successful limbal tissue dissection, from an organ culture media. Sundmacher and colleagues32 first cultivated rabbit limbal epithelium on human amniotic membrane as a substrate for in vitro epithelial cell culture. Koizumi and colleagues33 demonstrated that both cell suspension and explant culture methods produced a healthy epithelial cell layer, with benefits of using explants are that they are easy to prepare and there is no involvement of the conjunctiva, most typically aniridia. A healthy and stable tear film is essential for success of the procedure.34

The various protocols for cultivation of limbal epithelium differ in the use of intact versus epithelially denuded amniotic membrane, suspension of epithelial cells rather than explants, co-cultivation of 3T3 fibroblast feeder layers, and air-lifting prior to transplantation.32 Pellegrini and colleagues34 first reported successful reconstruction of the ocular surface in LSCD using a suspension culture technique.

The surgical techniques described include the corneoscleral crescent technique of HollandScwartz24,25 (wherein the donor corneoscleral rim is sectioned into 2 halves), corneoscleral ring technique of Tsobotka6 (wherein ring-shaped donor corneal limbal cells bearing limbal stem cells is transplanted) and the homologous penetrating central limbo-keratoplasty (HPCLK) technique of Sundmacher27 (here the donor corneo-scleral button is eccentrically trephined, resulting in one-third of the circumference of the button containing limbal tissue, thereby combining a penetrating keratoplasty and a limbal stem cell transplantation procedure).30,36 Lim et al39 described an alternative and novel technique using cyanoacrylate glue to achieve successful limbal tissue dissection, from an organ culture media stored corneoscleral button, without an artificial anterior chamber. Due to the fact that the limbal stem cells are antigenically more active than central corneal stromal and endothelial cells, systemic immunosuppression consisting of corticosteroid, Azathioprine and cyclosporine is recommended post-operatively.35

Liang et al20 determined the long-term outcomes of keratolimbal allograft (KLAL). Prolonged oral mycophenolate mofetil and tacrolimus and short-term prednisone and acyclovir were administered in 12 eyes (10 consecutive patients) with total limbal stem cell deficiency after KLAL. Ten eyes underwent subsequent penetrating keratoplasty. During a follow-up of 61.2 months after KLAL, postoperative epithelial breakdown due to exposure occurred late in the period after PKP and remained a primary risk. Mean daily doses of 1.4 g of mycophenolate mofetil and 1.6 mg of tacrolimus were administered for a mean period of 52.7 months (SD, 22.5; range, 23-91 months) with few adverse effects. Keratolimbal allograft and PKP rejection was noted in 2 and 3 eyes, respectively, though there was a reversal in 1 eye in each group, yielding final KLAL and PKP survivals in 10 and 8 eyes, respectively, and ambulatory visual acuity of up to 20/20 in 10 eyes for 67.2% of the entire follow-up period. Wylegala et al36 analyzed the graft survival rate and stability of the corneal surface in patients who underwent limbal stem cell transplantation. Three surgical techniques were evaluated: conjunctival limbal autograft (CLAU), living-related conjunctival limbal autograft (lr-CLAL), and keratolimbal allograft (KLAL) transplants. Graft survival rate and the regularity of the corneal surface differed significantly between the allo- and autografts. The 3-year and 6-year graft survival rates were 76.1% and 61.9%, respectively, for the autologous transplantation group, and 59.4% and 46.3%, respectively, for the allogeneic transplantation group, thereby concluding that significantly better long-term outcomes were achieved with autotransplantation of the limbus when compared with allogeneic limbal grafts from living-related and cadaveric donors.

Ex vivo expanded limbal autograft: Living-related ex vivo expanded limbal autograft (Figure 4a,4b): The various protocols for cultivation of limbal epithelium differ in the use of intact versus epithelially denuded amniotic membrane, suspension of epithelial cells rather than explants, co-cultivation of 3T3 fibroblast feeder layers, and air-lifting prior to transplantation.32 Kiuchi and colleagues35 demonstrated that both cell suspension and explant culture methods produced a healthy epithelial cell layer, with cells from the former being morphologically more superior. Currently most investigators prefer the explant culture technique.32 The benefits of using explants are that they are easy to prepare and there is no danger of damaging the corneal epithelium through enzyme treatment. The general principles of cultivating the cells by explant culture technique involve the following steps: harvesting the limbal tissue (from the contralateral healthy eye in case of a unilateral LSCD, or from donor corneas for bilateral LSCD); selecting the appropriate carrier: a sheet of multi-layered epithelium, human amniotic membrane, collagen shields, or contact lens; preparation of human corneal epithelial medium; and
explant cultures. Confirmation of growth can be done by various methods including direct observation, whole mount stained preparation, histopathology, immunohistochemistry, thymidine incorporation and by flow cytometry using markers for cell cycle.

Although a number of investigators have included various reconstruction techniques using autogenous conjunctiva, mucous membrane grafts, collagen lattices, synthetic implants, and cell-suspension cultures, the most widely accepted universal substratum for explant cultures is the HAM®.

The donor eye should be healthy without a history or physical signs of injury. A 2mm² biopsy is usually taken from the superior temporal limbus and placed in a cellular transport medium for transportation to the laboratory. If an allogenic transplantation is planned, the recipient should be immunosuppressed pre-operatively. Systemic immunosuppression may be begun a week or two prior to surgery. Cyclosporin A is the prototype immunosuppressive agent. A therapeutic contact lens is placed after surgery and may need to be retained for 8 to 12 weeks to allow proper epithelial adherence. If tolerated, systemic immunosuppression should be continued for a year or even longer.

Table 2: Summary of clinical studies of ex vivo cultivated limbal stem cell transplantation

<table>
<thead>
<tr>
<th>Author/year</th>
<th>Type of LEC stem cell</th>
<th>Intervention</th>
<th>No. of eyes</th>
<th>Mean follow-up (Months)</th>
<th>Corneal defect closure</th>
<th>Improvement in BCVA (mean ± SD) (%)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ours) 2010</td>
<td>Tissue engineered</td>
<td>2</td>
<td>24</td>
<td>24</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
<tr>
<td>(Yamada et al 2006)</td>
<td>Tissue engineered</td>
<td>10</td>
<td>30</td>
<td>12</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
<tr>
<td>(Kasai et al 2009)</td>
<td>Tissue engineered</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
<tr>
<td>(Kim et al 2009)</td>
<td>Tissue engineered</td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
<tr>
<td>(Monteiro et al 2009)</td>
<td>Tissue engineered</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
<tr>
<td>(Kim et al 2009)</td>
<td>Tissue engineered</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
<tr>
<td>(Hashemi et al 2009)</td>
<td>Tissue engineered</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
<tr>
<td>(Kim et al 2009)</td>
<td>Tissue engineered</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
<tr>
<td>(Kim et al 2009)</td>
<td>Tissue engineered</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>Corneal epithelial</td>
<td>81 ± 14</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5a, 5b: 1 day and 1 month post-operative appearance of donor site for ex vivo expanded limbal autograft (fellow eye of same patient as in figure 4)

Omoto et al reported the efficacy of human bone marrow-derived mesenchymal stem cells as a source of feeder cells for the cultivation of transplantable corneal epithelial cell sheets. Monteiro et al demonstrated, using immunohistochemistry and reverse transcription-polymerase chain reaction, that human immature dental pulp stem cells express markers in common with limbal stem cells, such as ABCG2, integrin beta1, vimentin, p63, connexin 43 and cytokeratins 3/12. These cells were also shown to be capable of reconstructing the ocular surface after induction of unilateral total limbal stem cell deficiency in rabbits, as shown by morphological and immunohistochemical analysis using human-specific antibodies against limbal and corneal epithelium, thereby suggesting that human immature dental pulp stem cells share similar characteristics with limbal stem cells and might be used as a potential alternative source of cells for corneal reconstruction.

Kim et al reported their experience with corneal epithelium, grown in vivo, transplantsion in three patients with persistent epithelial defect (PED). The three patients had ocular surface disease unresponsive to standard treatments and were therefore chosen for transplantation. They underwent transplantation of epithelial sheets, grown in vivo, to the most affected eye. In vivo cultivation was carried out in the cornea of a living related donor. After epithelialization was completed, the epithelium grown on an amniotic membrane was harvested gently; it was then transplanted into the patient’s eye after debridement of fibrovascular tissue. The cultivated epithelium was completely epithelialized by 2 weeks; it was well-differentiated with well-formed hemidesmosome. On immunohistochemical staining, p63, connexin 43, and Integrin beta4 were expressed in the cells on the epithelial sheet. The PED was covered completely and maintained for 4 weeks in all cases. However, corneal erosion recurred after 5 weeks in two cases. This novel technique demonstrated that corneal epithelial cells can be expanded in vivo successfully on denuded amniotic membrane on a healthy cornea and harvested safely. A corneal epithelial sheet, grown in vivo, can then be transplanted to treat an eye with a severe ocular surface disease, such as total limbal deficiency.

Hashemi et al undertook a study to establish the characterization of cultured oral mucosal epithelium thereby introducing them as an alternative source for reconstruction of ocular surface disease. The cultured oral epithelium shared the characteristics with corneal epithelium and hence could be an alternative source for ocular surface transplantation. Table 2 summarises some of the clinical studies of ex vivo cultivated limbal stem cell transplantation.

3) Amniotic membrane transplantation: Amniotic membrane may be used as a graft to replace damaged ocular surface stromal matrix, as a dressing to prevent unwanted inflammatory insults from gaining access to the damaged ocular surface, a combination of both as well as a carrier for expanding epithelial stem cells ex vivo. The proposed mechanisms for the benefits of amniotic membrane transplantation include prolonging life span and maintaining clonogenicity of epithelial progenitor cells, promoting non-goblet cell epithelial differentiation, promoting goblet cell differentiation when combined with conjunctival fibroblasts, excluding inflammatory cells because of anti-protease activities and suppressing the TGF-β signaling system and myofibroblast differentiation of normal fibroblasts. The observed clinical effects include epithelialization with maintenance of normal epithelial phenotype and reduction of inflammation, vascularisation and scarring. (Figures 6a,b)
The role of amniotic membrane transplantation in surgery for pterygium deserves mention. Kucukerdonmez et al\(^{51}\) compared the results of amniotic membrane transplantation (AMT) using fibrin glue vs vicryl sutures in pterygium surgery. After the removal of pterygium, patients were randomised to undergo AMT using fibrin glue (Tisseel, 32 eyes) or 8.0 vicryl sutures (38 eyes). The average operation time in the fibrin glue and suture groups were 11.2±2.4 min (mean±SD) and 18.7±2.2 min, respectively (P=0.018). Significantly fewer post-operative symptoms were observed in the fibrin glue group at post-operative days 1, 7, and 14 (P<0.05 for all). At the end of the follow-up, true recurrence was developed in three eyes (9.4%) in the fibrin glue group, and in four eyes (10.5%) in the suture group (P=0.33). The rates of conjunctival recurrence were 21.9% (seven eyes) and 23.7% (nine eyes) in the fibrin glue and suture group, respectively (P=0.33). The time to re-epithelialization was 24.4±2.4, 20.4±5.8 and 16.9±7.0 days in patients with neurotrophic, inflammatory and scleral ulcers, respectively (P=0.431). The pain relief interval in the cryo-preserved and freeze-dried AM group was 17.7 and 23.3 days, and the re-epithelialization interval was 29 and 22 days, respectively, which were not significant.

(C) Penetrating/lamellar keratoplasty in ocular surface disease:
Ocular surface reconstruction is, most often, a sequence of procedures culminating in an optical penetrating/lamellar keratoplasty. These procedures aim to optimize conditions for optical function by ensuring a normal interface between the lids and the globe, normal tear function and, finally, cellular replacement or reconstruction. Adequacy of the stem cell reserve, aqueous- or mucin-deficiency dry eye and anatomic lid abnormalities are factors critical to the survival of a corneal graft. Adequate stem cell supply, adequate tear function and anatomically functional lids are essential to prevent persistent non-healing epithelial defects, secondary ulceration with stromal melting, vascularisation and conjunctivalisation and, ultimately, immune graft rejection. There are three basic approaches: 1) simultaneous stem cell graft and penetrating keratoplasty using the same donor tissue, 2) the staged approach, which consists of the appropriate stem cell surgery followed by penetrating or lamellar keratoplasty at a later date, and 3) a large eccentric donor graft supplying both limbal stem cells and the optimal keratoplasty.

Shi et al\(^{54}\) compared the therapeutic outcomes between penetrating keratoplasty (PK) combined with keratolimbal allograft (KLAL) transplantation and corneoscleral transplantation in patients with severe corneal burns. Thirty-eight patients (39 eyes) diagnosed with severe corneal burns in stable status with vascularization and corneal opacity were included. Combined PK with KLAL transplantation was performed in 23 eyes (group A) and corneoscleral transplantation in 16 eyes (group B). The main outcome measures were postoperative complications and long-term visual acuity and rejection. The incidence of postoperative complications (corneal epithelium defect, hyphaema and hypotony) in group A were obviously less than those in group B. Fifteen eyes (65%) in group A and four eyes (25%) in group B had best-corrected visual acuity of >0.05 at 24 months (P=0.022). Limbal stem cell rejection occurred in eleven grafts (48%) in group A and eight grafts (50%) in group B (P=1.000). Nine grafts (39%) in group A and 12 grafts (54%) in group B had endothelial rejection (P=0.049). Thus, PK combined with KLAL transplantation may reduce the risk of postoperative complications. Long-term prognosis appears better than corneoscleral transplantation in the treatment of severe eye burns.

Mendicute et al\(^{55}\) reported a new surgical procedure for the treatment of ocular surface diseases associated with severe limbal insufficiency.
Four patients with severe ocular surface disease who required stem cell transplantation and keratoplasty for the correction of limbal insufficiencies underwent large diameter lamellar keratoplasty with microkeratome. When limbal dysfunction was associated with limited alteration of the ocular surface and transparent deep corneal stroma, only the anterior corneal stroma was transplanted. When the entire corneal thickness was compromised, both anterior and deep donor buttons were transplanted. Patients remained stable and improved their visual acuity after surgery. Best-corrected visual acuity ranged from 20/200 to 20/30. No corneal graft rejections were found. The main complication found in one of patients was a central stromal opacity which required a secondary penetrating keratoplasty. This technique enables a single-stage surgical procedure and the use of a single donor which reduces the risk of rejection. In addition, better opacity which required a secondary penetrating keratoplasty. This main complication found in one patients was a central stromal from 20/200 to 20/30. No corneal graft rejections were found. The their visual acuity after surgery. Best-corrected visual acuity ranged buttons were transplanted. Patients remained stable and improved.

(E) Prosthokeratoplasty in ocular surface disease: Complex issues of material bio-compatibility and technical difficulty limit the success of prosthokeratoplasty. The primary complications have included dislocation and extrusion of the prosthesis, retroprosthetic membrane formation, secondary glaucoma, endophthalmitis, uveitis, retinal detachment, vitreous haemorrhage, ad leakage around the keratoprosthesis with resulting hypotony, among others. The osteo-odonto-keraatoprosthesis (OOKP) and the Boston keratoprosthesis are the most frequently performed these days. Patients with severe disturbances of the ocular surface, such as those with Stevens-Johnson syndrome, have an extremely poor prognosis. Nonincising conditions, on the other hand, may do quite well, while surface diseases such as ocular cicatricial pemphigoid and chemical burns occupy the prognostic mid-ground. The key factor appears to be the degree of inflammation.

Implantation of a keratoprosthetic device is generally undertaken when other surface reconstruction methods for visual rehabilitation have failed, or are deemed unfeasible. Candidates would include those with severe bilateral chemical or thermal injury and patients with ocular cicatricial pemphigoid or Stevens-Johnson syndrome. Aldave et al. report the usefulness of the Boston type I keratoprosthesis in the management of corneal opacification, corneal limbal stem cell failure, or both in a large single-surgeon series. The Boston type I keratoprosthesis was demonstrated as an effective means of managing repeat corneal graft failure and corneal limbal stem cell failure with or without corneal opacification in patients with both unilateral and bilateral visual impairment. Tan et al. have evaluated the efficacy and preliminary safety of the osteo-odontokeratoprosthesis in end-stage corneal and ocular surface disease. Sixteen adults of Asian ethnic origin, bilaterally blind with end-stage corneal blindness from Stevens-Johnson syndrome, or severe chemical or thermal burns were included. Osteo-odontokeratoprosthesis surgery was performed in two stages: in stage 1, an autologous canine tooth is removed, modified to receive an optical polymethyl methacrylate cylinder, and implanted into the cheek. The ocular surface is denuded and replaced with full-thickness buccal mucosa. Stage 2 surgery, performed 2 to 4 months later, involves retrieval of the tooth-cylinder complex and implanting it into the cornea, after reflection of the buccal mucosal flap, corneal trephination, iris and lens removal, and anterior vitrectomy. Concurrent glaucoma and vitreoretinal procedures are also performed at either stage, as required. Intraoperative complications included expulsive hemorrhage (keratoprosthesis device not implanted), tooth fracture (n = 1), oronasal fistula (n = 1), and mild inferior optic tilt (n = 1). Anatomical stability and keratoprosthesis retention was maintained in all eyes, with no dislocation, extrusion, retroprosthetic membrane formation, or keratoprosthesis-related infection. Other complications not directly related to device insertion included retinal detachment (RD) related to silicone oil removal (n = 1) and endophthalmitis related to endoscopic cyclophotocoagulation performed 1 year after OOKP surgery (n = 1). Eleven patients (73.3%) attained a stable best spectacle-corrected VA of at least 20/40 or better, whereas 9 (60%) attained stable 20/20 vision. Four patients achieved their best visual potential, ranging from 20/100 to counting fingers vision, related to preexisting glaucomatous optic neuropathy or previous RD.

REFERENCES

$\text{K} \text{E} \text{Y} \text{ \text{G} \text{U} \text{L} \text{I} \text{N} \text{E} \text{N} \text{S} \text{I} \text{R} \text{I} \text{A} \text{T} \text{I} \text{V} \text{S} \text{F} \text{O} \text{R} \text{A} \text{U} \text{T} \text{H} \text{S}$

Financial Disclosure/Peer Review

Authors must disclose any financial relationship with any entity or product described in the manuscript (including grant support, employment, honoraria, gifts, fees, etc.). Manuscripts are subject to peer review and revision may be required as a condition of acceptance. These instructions apply to all submissions.

$\text{J} \text{I} \text{M} \text{S} \text{A \text{ \text{T}R \text{AVEL G}R\text{ANT}}}$

(Approved by the CEC/BOT in the meeting held on 26-1-2010)

Guidelines for the Award

1. No of Grants -Two (2); starting at IMSACON 2011 at Hyderabad.
2. Original research work by a young researcher (age < 45 years) for presentation at IMSACON and subsequent publication in JIMSA every alternate year for travel with in the country.
3. Research work should clearly project the objectives, selection of material, methodology adopted, results analysis with statistics, discussion and conclusions. A summary in 350 words highlighting why the paper should be considered for the award, must be enclosed.
4. Travel Grant not exceeding Rs.8000/- per awardee, to cover the travel expenses with in the country; CEC may also recommend complimentary registration for the awardee if funds are available.
5. The abstract of the paper should be sent to the Chairman, Scientific Committee, IMSACON (for acceptance and presentation at the conference) bearing the label “JIMSA Travel Grant.” Only accepted papers will be judged for “Travel Grant” at the time of IMSACON by the jury comprised of JIMSA Award Committee members. The grant will be released to the selected candidates after the Conference.
6. In case the applicant is in Government job, he should enclose a letter from the Head of Department/Institution certifying that he is not being supported by any other agency.
7. Full manuscript (3 copies of selected article (along with one CD) prepared as per the format of JIMSA. (Check list on page-156 should be sent to Editor, JIMSA at office address for the publication in JIMSA.
8. The selected articles will be accepted for publication in JIMSA only after the proper peer review by the referee.

P. D. Gulati
Editor, JIMSA
